Ring Expansion of 2-Alkylidenedihydroquinazolines to Iminodihydro-1,4benzodiazepines by Methanesulfonyl and Trifluoromethanesulfonyl Azide

Helmut Quast,*[a] Svetlana Ivanova,[a] Eva-Maria Peters,[b] and Karl Peters[b]

Dedicated to Dr. Leo H. Sternbach on the occasion of his 92nd birthday

Keywords: Azides / Cleavage reactions / Cycloadditions / Nitrogen heterocycles / Polycycles / Ring expansion / Synthetic methods

2-Alkyl-1-methylquinazolinium hexafluorophosphates 9 are deprotonated by sodium or potassium hydride to afford solutions of 2-alkylidenedihydroquinazolines 10, which were investigated by NMR spectroscopy. Trapping with methanesulfonyl azide (5a) of 10 in situ or subsequent treatment with trifluoromethanesulfonyl azide (5b) gives mixtures of colourless (15) and intensely yellow N-sulfonylimino-1,4-benzodiazepines 16 along with products due to cleavage of the exocyclic double bond of 10, viz. 11 and 13. The ethylidene compound 10b yields the bicyclic products 18 and 19, apparently by complex sequences of reactions that are triggered by removal of the acidic proton at C-2 of 16b and 16f. The structures of the products are based on spectroscopic evidence and X-ray diffraction analyses performed on 15b, 16d, 16e,

Introduction

Sternbach's seminal discovery of physiologically active benzo[e][1,4]diazepines some 40 years ago^[2] triggered an enormous, and still ongoing, research effort in this field, [3-5] which has led to the synthesis of a host of benzo[e][1,4]diazepine derivatives. More recently, benzo[e][1,4]diazepines have become the target of combinatorial syntheses.^[6] Nevertheless, certain structural variations have been neglected by the mainstream synthetic efforts, apparently due to the lack of convenient access. For example, only a few imines of type 1 have been described and these are mainly in the patent literature.^[7] 3-Iminobenzodiazepines of general formula 2 are unknown as yet^[4] and even the corresponding benzo-1,4-diazepin-3-ones 3 are very rare species.[8]

Since Sternbach's pioneering studies on the ring expansion of quinazoline derivatives to afford benzo-1,4-diazepines,[2,9] a number of additional methods have been developed for this conversion.^[10] Recently, we have investigated the scope and limitations of Sato's[11] ring expansion with electrophilic organic azides of 2-alkylquinolinium salts via 2-alkylidenedihydroquinolines.[12] The analogous sequence of reactions has previously led to the imino-1,4naphthodiazepine 6[13] and a variety of six-membered heterocyclic imines.^[13,14] These results encouraged us to extend this ring expansion method to quinazolinium salts 9 with a view to finding a route to novel imino-1,4-benzodiazepines

related to Sternbach's 1,4-benzodiazepinones. The results of this study are reported here.

Results and Discussion

© WILEY-VCH Verlag GmbH, D-69451 Weinheim, 2000

We restricted the present study to 2-alkyl-4-phenylquinazolines 8 because the anticipated imino-5-phenyl-1,4-benzodiazepines resemble physiologically active benzodiazepinones. The unknown 2-alkyl-4-phenylquinolines 8d and 8e were prepared according to the procedure reported for 8a-c. [15] 1-Methylquinazolinium salts 9 were required as starting materials for the projected ring expansion sequence.

E-mail: ivanova svetlana@hotmail.com Max-Planck-Institut für Festkörperforschung, Heisenbergstraße 1, D-70506 Stuttgart, Germany Fax: (internat.) + 49-711/6891599 E-mail: karpet@vsibm.mpi-stuttgart.mpg.de

Institut für Organische Chemie der Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany Fax: (internat.) + 49-541/814193

Methylation with dimethyl sulfate (8a, 8b, and 8d) or methyl triflate (8c and 8e) yielded viscous oils, which were converted into the nicely crystalline hexafluorophosphates 9. Proton spectra of the crude products indicated the regioselective formation of a single quaternary salt in every case. Unequivocal proof for the structures 9b, 9d, and 9e was provided by X-ray crystallography of the products from methanesulfonyl azide (Figures 3–5). Deprotonation of the alkylquinazolinium salts 9 with potassium hydride in deuterated solvents^[12] gave persistent, yellow to violet solutions of 2-alkylidenedihydroquinazolines 10, which could be stored under argon at low temperatures.

The 2-alkylidenedihydroquinazolines **10b**, **10c**, and **10e** may exist in the (E) and (Z) configuration. Only one diastereomer, however, could be observed by proton- and carbon-13 NMR spectroscopy in each case. We assign these diastereomers the (E) configuration because the (Z) configuration is destabilised by unfavourable steric interactions. This assignment is confirmed for **10b** and **10c** by the carbon-13 shifts of the *N*-methyl groups $(\delta = 33-34, \text{Table 2})$, which absorb at the same resonance frequency as that of the 2-methylene compound **10a** $(\delta = 33)$. By contrast,

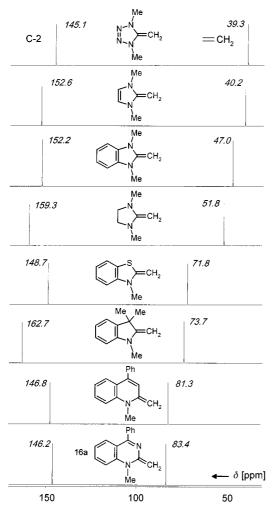


Figure 1. Chemical shifts (δ values) of the methylene groups and the neighbouring ring carbon atoms in carbon-13 spectra of various 2-methylene heterocycles

the *N*-methyl group of **10d**, which may be taken as a model for (Z)-**10b** and (Z)-**10c**, absorbs at much lower field $(\delta = 41)$.

We have previously drawn attention to the useful correlation between the high-field shifts of the exocyclic carbon atoms of 2-alkylidene-*N*-heterocycles and their reactivity towards electrophiles.^[12,16] A graphical representation of the carbon-13 shifts for the 2-methylene compounds (Figure 1) reveals that 2-alkylidenedihydroquinazolines should be less nucleophilic than 2-alkylidenedihydroquinolines, which to date have marked the lower end of the reactivity scale. Therefore, only highly electrophilic azides such as the sulfonyl azides 5 appeared as promising reagents for the ring expansion.

In the experiments with *methane*sulfonyl azide (**5a**), the 2-alkylidenedihydroquinazolines **10** were generated in tetrahydrofuran solution by deprotonation of **9** with sodium hydride and *trapped* in situ by an excess of **5a**. Work up of the solid material present in the reaction mixtures afforded the major portion of the almost insoluble *N*-sulfonylimine **13a**. The dark, semi-solid crude products obtained from the solution were complex mixtures according to their proton spectra. Separation by flash chromatography and medium-pressure liquid chromatography^[17] yielded crystalline products along with small amounts of **13a** (Table 1). Whereas

the methylene (10a) and benzylidene (10c) compounds exclusively gave 13a by cleavage of the exocyclic double bond, the other 2-alkylidenedihydroquinazolines investigated (10b, 10d, and 10e) yielded, besides 13a, colourless and yellow products whose molecular formulae correspond to the isomeric ring-expansion products 15 and 16. A single, colourless product of this type was obtained from 10b (15b), and a single, yellow compound from 10e (16e), while 10d gave both the colourless and the yellow product (15d and 16d).

For the ring expansion with *trifluoromethane*sulfonyl azide (5b), solutions of 10 were prepared by deprotonation with potassium hydride and subsequently treated with a solution of 5b in dichloromethane. Again, the methylene compound 10a gave exclusively the cleavage product 13b. In all other cases (10b, 10d, and 10e) both the colourless and the yellow ring expansion products could be isolated, in low yields, along with 13b. In the experiments involving the isopropylidenedihydroquinazoline 10d, small amounts of the known quinazolone 11^[18] were isolated. This compound could also be detected by scrutiny of the proton spectra of all other product mixtures that were obtained from 5b. It is likely that 11 arises by autoxidation of 10 by molecular oxygen that is still dissolved in the incompletely degassed dichloromethane solutions of 5b employed.^[12]

Table 1. Products, yields obtained in preparative experiments, melting points taken after recrystallisation from the solvent listed, and IR data

Starting	Pro-	Yield	M. p. [°C]	IR [cm-1] (1	(Br)
materials	ducts	[%]	(Solvent)	C=N, C=C	NH (br)
methanest	ılphony	l azide	e (5a)		
9a	13a	53	297 – 300	1591, 1542, 1508	
			$(EtOH/CHCl_3, 4:1)$		
9b	13a	37			
	15b	15	193 – 196 (EtOH)	1618, 1575, 1542	
	18a	5	198 – 200 (dec.)	1633	3265
	10	20	(CHCl ₃ /PE, 1:1)	1.601	
	19	20	157 – 159 (dec.)	1631	3235
9c	13a	78			
9 d	13a	4			
	15d	3	134 136 (EtOH)		
	16d	59	146 – 148 (EtOH)	1618, 1603, 1591	
9e	13a	75			
	16e	17	191 – 193 (EtOH)	1620, 1590	
trifluorom	ethanes	ulphor	nyl azide (5b)		
9a	13b	40	254 – 256 (EtOH)	1549, 1517	
9b	13b	5			
	15f	6	131 – 134 (EtOH)	1620, 1581, 1570, 15	39
	16f	12	169 – 172 (EtOH)	1568, 1521	
	18b	5	165 – 167 (dec.) (EtOH)	1616	3309
9d	11	12	145 – 147 (EtOH)	1647 ^[a] , 1607, 1596,	1540
	13b	2			
	15g	19	194 – 197 (EtOH)	1617, 1578, 1537	
	16g	23	137 – 140 (EtOH)	1622, 1610, 1561	
9e	13b	45			
	15h	15	253 - 256 (EtOH/H ₂ O)	1587, 1573, 1552	
	16h	13	230 - 234 (EtOH/H ₂ O)	1582, 1524, 1511	

[[]a] C=O.

The structures of the N-sulfonylimino-1,4-benzodiazepines were based on UV/Vis (Figure 2), proton and carbon-13 NMR spectra, and ¹H, ¹³C-COSY experiments (Tables 3 and 4). Two types of compounds could be immediately distinguished by virtue of the colour of the crystals; one is colourless while the second forms intensely yellow crystals, some of which exhibit yellow fluorescence. UV/Vis spectra indicated the presence of an extended conjugated system in the latter, which were therefore assigned the 3-(N-sulfonylimino)-1,4-benzodiazepine structures 16. The most characteristic difference between the NMR spectra of the colourless and the yellow products are the chemical shifts of the N-methyl groups. Those of the former resonate at lower field ($\delta^{H} = 3.5-3.9$; $\delta^{C} = 40-45$) than those of the latter $(\delta^{\rm H} = 2.8-3.4; \delta^{\rm C} = 34-40)$. These results left little room for doubt about the structures of cyclic N-sulfonylamidines 15 for the colourless ring-expanded products and of 3-(Nsulfonylimino)-1,4-benzodiazepines 16 for the yellow com-

pounds.

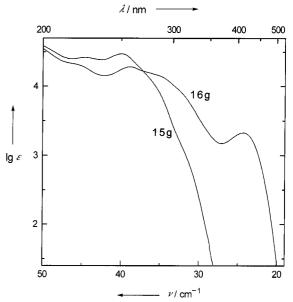


Figure 2. UV/Vis spectra of the N-(trifluoromethanesulfonyl)imino-1,4-benzodiazepines $15{\rm g}$ and $16{\rm g}$ recorded for solutions in acetonitrile at 20 °C

The structures and configurations of (E)-15b (Figure 3), (Z)-16d (Figure 4), and (Z)-16e (Figure 5) were established by X-ray diffraction analyses. In the solid state, (E)-15b adopts a half-chair conformation where six atoms define the plane from which only C-3 is twisted. The methyl group at C-3 occupies the axial position in which steric interactions are minimised. The crystal and molecular structures of (Z)-16d and (Z)-16e are similar. The asymmetric unit of (Z)-16e contains one disordered molecule of ethanol, which is not shown in Figure 5. In all refinements, the observed position parameters of the non-hydrogen atoms were fixed; the hydrogen atoms were neglected.

Whereas in the solid state only a single diastereomer is present, viz. (ax,E)-15b, two diastereomers of 15b, and of 15f also, appear in solution. The NMR spectra of the predominant diastereomer of 15b and the minor diastereomer

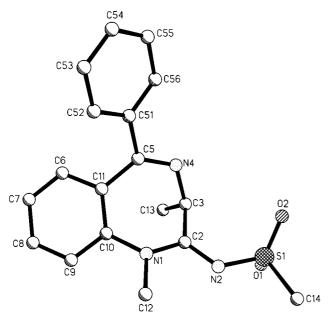


Figure 3. Perspective drawing of the 2-iminodihydrobenzazepine (ax,E)-15b showing the numbering of the atomss

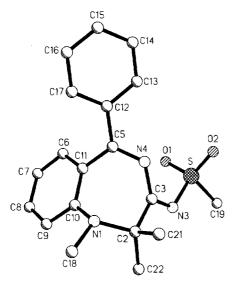


Figure 4. Perspective drawing of the 3-iminodihydrobenzazepine **16d** showing the numbering of the atoms

of **15f** are characterised by high-field resonances of the 3-methyl group ($\delta^{\rm H}=1$; $\delta^{\rm C}=12$) and an unusual low-field shift of the quadruplet for the proton at C-3 ($\delta=6.3$ –6.5). The opposite is true for the corresponding signals of the other diastereomers (3-methyl: $\delta^{\rm H}=1.8$ –1.9; $\delta^{\rm C}=18$ –19; 3-H: $\delta=3.8$ –3.9) (Tables 3 and 4). These results are interpreted in terms of (*E*) diastereomers with a quasi-axial 3-methyl group [(ax,E)-**15b** and (ax,E)-**15f**] and (z) diastereomers with a quasi-equatorial 3-methyl group [(eq,z)-**15b** and (eq,z)-**15f**].

While the geminal methyl groups of the 3-(*N*-sulfonylimino)benzodiazepines **16d** and **16g** are shift-equivalent in the NMR spectra due to rapid exchange, those of the 2-(*N*-sulfonylimino)benzodiazepine **15g** do *not* undergo rapid exchange relative to both NMR time scales. Exchange broadening at room temperature is observed only for the

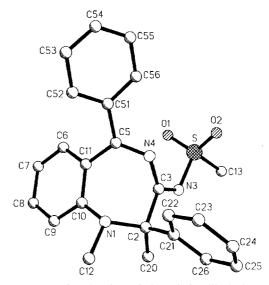


Figure 5. Perspective drawing of the 3-iminodihydrobenzazepine **16e**·C₂H₅OH showing the numbering of the atoms; the disordered ethanol molecule is not shown

methyl groups of **15d**. Cooling leads to further broadening of the proton signal and splitting at a coalescence temperature of 284 K. From the frequency difference of the two methyl signals in the limit of slow exchange ($\Delta v = 181.3 \text{ Hz}$ at 219 K and 200.13 Hz) the rate constant for the ring inversion at the coalescence temperature is calculated as $k_c = 403 \text{ s}^{-1}$ and the free enthalpy of activation at $\Delta G_c^{\ddagger} = 54 \text{ kJmol}^{-1}$.[19]

The 2-ethylidenedihydroquinazoline 10b reacted with the sulfonyl azides 5 to afford unexpected products along with the products of ring expansion (16f, 15b, and 15f) and cleavage of the exocyclic double bond (13). All three isolated compounds form colourless, high-melting crystals and have remarkable molecular formulae corresponding to (16b or 16f + O) = 18 and $(16b + NSO_2CH_3) = 19$. The combined IR (Table 1) and NMR-spectroscopic evidence (Tables 3 and 4) indicated the presence of bicyclic systems and led us to propose the benzo-8-oxa-2,6-diazabicyclo[3.2.1]oct-3-ene (18) and benzo-2,6,8-triazabicyclo[3.2.1]oct-3-ene structures 19 or 21, respectively. The structure of the benzo-8-oxa-2,6diazabicyclo[3.2.1]octenone 20, which closely resembles 18, has been elucidated by Sternbach et al. with the help of single-crystal X-ray diffraction analysis.^[20] A search of the Beilstein Data Base failed to uncover derivatives of the apparently novel 2,6,8-triazabicyclo[3.2.1]octane system. [21]

An X-ray diffraction analysis unequivocally proved structure 19 for the major bicyclic product obtained from 16b. The compound crystallises with one molecule of dichloro-

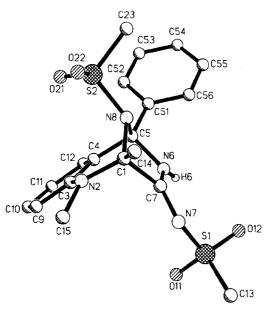


Figure 6. Perspective drawing of the benzo-2,6,8-triazabicy-clo[3.2.1]octene 19·CH₂Cl₂ showing the numbering of the atoms; the disordered molecule of dichloromethane is not shown

methane (not shown in Figure 6), which was included in the anisotropic refinements except for its hydrogen atoms. The confirmation of structure 19 lent credence to the proposed structures 18 for the minor bicyclic products because it provided the opportunity to compare their NMR data with those of 19.

In the absence of mechanistic investigations, only tentative explanations can be offered for the formation of the unusual products 18 and 19. Certainly, the proton at C-2 of

16b and 16f is involved. Tautomerisation or deprotonation in the basic medium may yield the tautomers 17 or the corresponding anions, which are cyclic 8π systems. Autoxidation with molecular oxygen that is still present in incompletely degassed reaction mixtures may give rise to the formation of 18. [3 + 2] Cycloaddition of 5a to 17, or the anion derived thereof, followed by extrusion of molecular nitrogen and cyclisation across the seven-membered ring by nucleophilic addition at C-4 may afford 19.

Conclusion

The ring enlargement of 1-methyl-2-alkylquinazolinium salts 9 by sulfonyl azides yields two types of novel Nsulfonylimino-1,4-benzodiazepines 15 and 16, which arise by 1,2-shift of N-3 and N-1, respectively. In addition, cleavage products (11 and 13) of the exocyclic double bond of 10 are formed. While the quinazolinone 11 apparently results from autoxidation of 10, all other products may be interpreted by invoking labile spirocyclic [3+2] cycloadducts 12 as crucial intermediates which decompose in three different ways. If C-2 of the 3-(N-sulfonylimino)-1,4-benzodiazepine bears a proton as in 16b and 16f, subsequent reactions occur that eventually furnish the heterobicycles 18 and 19. These reactions and, perhaps, others that involve the electrophilic group C=N-C=NSO₂R in 16 result in low yields of N-sulfonylimino-1,4-benzodiazepines, but may be suppressed by optimisation of the reaction conditions. Finally, we note that the substitution patterns that favour ring expansion are the same as have been found with 2-alkylidenedihydroquinolines^[12] and five-membered 2-alkylidene-N-heterocycles.[13,14] Usually, 2-methylene and 2-benzylidene compounds undergo cleavage of the exocyclic double bond, whereas alkyl groups at the exocyclic carbon atom promote ring enlargement.

Experimental Section

General Remarks: Yields and melting points: Table 1. $^{-1}$ H NMR: Table 2 and Table 3. $^{-13}$ C NMR: Table 2 and Table 4. $^{-}$ Molecular formulae and masses, and elemental analyses: Table 5. $^{-}$ Melting points: Apparatus from Reichert, Vienna. $^{-1}$ H and 13 C NMR: Bruker AC 200, AC 250 and DMX 600 (**10a–e**, **15b**, and **15f**). The assignments of the signals of **15b**, **15d**, **15f**, **16d**, **16e**, **16h**, **18a**, **18b**, and **19** were based on 13 C, 1 H COSY experiments. $^{-}$ IR: Perkin-Elmer 1420. $^{-}$ UV/Vis: Perkin-Elmer 330. $^{-}$ Flash chromatography: (40 × 4) cm and (30 × 2.5) cm glass columns with silica gel 32–63 μm (ICN Biomedicals), UV detector Knauer 87.00 (λ = 254 nm), 1.8 bar N₂. $^{-}$ MPLC: (70 × 7)cm glass column packed with silica gel LiChroprep Si60, 15–20 μm (Merck), UV detector Knauer 87.00 (λ = 254 nm), differential refractometer Bischoff 8110. $^{-}$ MS, 70 eV or chemical ionisation with isobutane, 0.3 mbar (**15b**, **15f**, **16f**, **18a**, **18b**, **19**): Finnigan MAT 8200.

Tetrahydrofuran and benzene were dried with powdered KOH and distilled from NaH. Petroleum ether (PE), boiling range $50-70^{\circ}$ C, ethyl acetate (EA), and 1,2-dichloroethane were distilled from P_2O_5 . $-[D_3]$ Acetonitrile and $[D_6]$ dimethyl sulfoxide were dried with

Me

FULL PAPER

CaH₂. [D₆]Benzene was dried with NaH. – NaH and KH, suspended in paraffin oil, were washed three times with pentane and dried in the stream of Ar. Experiments involving NaH, KH, and 10 were carried out in dry solvents under Ar (99.998%). – 2-Aminobenzonitrile was purchased from Acrôs Organics. – The following compounds were prepared as described: 5a, [13] solutions of 5b in dichloromethane, [22] 8a–c. [15]

2-Alkyl-4-phenylquinazolines (8d and 8e). – **General Procedure:** A solution of 2-aminobenzonitrile (11.8 g, 100 mmol) in tetrahydrofuran (100 mL) was added dropwise to a stirred solution of phenylmagnesium bromide in tetrahydrofuran (300 mL) prepared from bromobenzene (40.8 g, 260 mmol) and magnesium (5.4 g, 220 mmol). The mixture was heated under reflux for 2 h. Subsequently, 2-methylpropionyl chloride (for **8d**, 15.9 g, 150 mmol) or 2-phenylpropionyl chloride (for **8e**, 25.2 g, 150 mmol) was added dropwise to the stirred mixture, which was cooled with ice, followed by heating under reflux for 2 h. The mixture was allowed to cool. A saturated aq. solution of NH₄Cl (200 mL) was added and sufficient water to dissolve the inorganic precipitate. The aqueous layer was extracted with ether (4 × 50 mL). The combined organic layers were dried with MgSO₄. Distillation of the solvent in vacuo gave brown oily residues.

2-(1-Methylethyl)-4-phenylquinazoline (8d): The residue was extracted with aq. HCl ($2\,$ M, $200\,$ mL). The aq. solution was made

Table 2: Chemical shifts (δ values) and coupling constants ([Hz], *in italics*) in proton (top) and carbon-13 spectra (bottom) of 2-alkylidene-1-methyldihydroquinazolines **10**

Cpd.	R1-		 -C-			J [Hz]	NMe		Aryl		[a]
10a	Н	3.77	4	.17	Н		3.09		6.6 – 7.	6	F
10b	Н	4.20 (q) 1	.90 (d)	Me	6.8, ³ J	3.00		6.6 – 7.	7	F
10c	Н	5.27			Ph		3.30		6.7 – 8.	0	F
10d	Me	1.65	2.	.31	Me	0.6, ⁴ J	2.77		6.3 – 7.	8	В
10e	Me	2.43			Ph		2.67		6.7 - 7.3	8	F
						C=N		CI	1	quat.C	
10a	Н		83.4		Н	162.1	33.1	112.2 128.68 129.77 134.1	119.1 128.73 129.82	118.0 138.8 146.2	F
10b	Н		93.8	11.6	Me	160.7	32.9	112.0 128.49 129.78 133.9	118.56 128.73 129.86	118.23 139.1 146.3 147.4	F
10c	Н		100.6		Ph	162.3	34.1	113.1 124.1 128.63 130.18 134.4	119.6 128.27 128.97 130.20	118.3 138.8 139.6 146.46 146.94	F
10d	Me	19.67	107.8	19.85	Me	157.7	41.0	113.4 127.6 129.07 132.1	118.4 128.3 129.82	120.4 138.8 142.7 149.4	В
10e	Me	19.2	110.7		Ph	159.3	40.7	113.4 125.9 128.78 129.11 130.22	119.5 127.9 128.79 129.93 133.4	120.2 138.8 144.10 144.30 148.8	F

[[]a] Solvents: $B = [D_6]$ benzene, $F = [D_8]$ tetrahydrofuran.

alkaline by dropwise addition of aq. NaOH (20%) under cooling with ice. The precipitate was collected by filtration, washed with water, and dried. Yellow powder (17.3 g, 70%). Recrystallisation from ethanol/water (1:1) gave a white powder (12.7 g, 51%, m.p. 59–60 °C).

2-(1-Phenylethyl)-4-phenylquinazoline (8e): Repeated recrystallisation from ethanol afforded a colourless powder (8.0 g, 26%, m.p. 107-108 °C).

2-Alkyl-1-methyl-4-phenylquinazolinium Hexafluorophosphates 9a, 9b, and 9d. – **General Procedure:** A mixture of **8a, 8b,** or **8d** (25 mmol) and dimethyl sulfate (4.73 g, 37.5 mmol) was stirred at 110–120 °C for 1 h. After cooling to 70 °C, ethanol (10 mL) was added and the mixture was stirred to give a clear solution. A solution of NH₄PF₆ (4.08 g, 25 mmol) in water (10 mL) was added dropwise. A pale yellow oil formed and solidified slowly (1–24 h). The solid material was collected by filtration, washed with water, and recrystallised.

1,2-Dimethyl-4-phenylquinazolinium Hexafluorophosphate (9a): Brown powder (6.46 g, 68%). Recrystallisation from ethanol gave pale yellow needles (3.23 g, 34%, m.p. 235–238 °C, dec.).

2-Ethyl-1-methyl-4-phenylquinazolinium Hexafluorophosphate (9b): Pale brown powder (7.48 g, 76%). Recrystallisation from ethanol gave pale yellow needles (5.52 g, 56%, m.p. 226–232 °C, dec.).

Table 3. Chemical shifts (δ values) and coupling constants ([Hz], *in italics*) in proton spectra

Cpd.	Me-	—CH _n	3J	NMe	SO ₂ Me	NH	Ring protons	[a]
8d	1.49	3.44 (sept)	6.9				7.4 – 8.1	Т
8e	1.88	4.64 (q)	7.2				7.1 – 8.1	T
9a	3.19	(1)		4.37			7.6 – 8.5	A
9b	1.55	3.45 (q)	7.3	4.37			7.6 – 8.5	A
9c		4.84[b]		4.40			7.3 – 8.5	A
9d	1.54	3.86 (sept)	6.6	4.42			7.6 – 8.5	A
9e	1.89	5.03 (q)	6.7	4.34			7.2 – 8.5	A
11		(1)		3.79			7.2 – 7.9	Т
13a				3.94	3.29		7.3 – 8.1	T
13b				3.97			7.4 – 8.2	T
(E)-15b	0.99	6.53 (q)	7. 3	3.50	3.13		7.1 0.2	•
(Z)-15b	1.82	3.84 (q)	6.5	3.73	3.15			
15 d [c] [d]	0.91 1 1.34	.81		3.92 3.86	3.22 3.13		7.2 – 7.7 7.2 – 7.7	T T
(E)-15f	1.01	6.27 (q)	7.3	3.59	3.13		1.2 - 1.1	1
(Z)-15f	1.92	3.90 (q)	6.6	3.67				
15g	0.92 1.		0.0	3.83			7.3 – 7.7	T
15h	2.10			3.89			6.7 - 7.8	Т
16d	1.49			2.85	3.03		7.0 - 7.8	T
16e	1.89			2.91	3.04		6.9 - 7.6	T
16f	1.40	3.44 (q)	6.7	3.43				T
16g	1.49			2.92				Т
16h	2.12			3.42				T
18a	1.89			3.07	2.97	8.86		T
18b	1.95			3.10		9.07		T
19	2.01			2.95	2.15 2.86	10.63		D

 $^{^{[}a]}$ Solvents: A = [D₃]acetonitrile, D = [D₆]dimethyl sulfoxide, T = [D]trichloromethane. – $^{[b]}$ CH₂Ph. – $^{[c]}$ Spectrum in the slow-exchange limit (–54 °C). At room temperature, a broad signal (δ = 0.8–1.8) is observed for the geminal methyl groups. – $^{[d]}$ Spectrum in the limit of fast exchange (58 °C).

Table 4. Chemical shifts (δ values) and ^{19}F , ^{13}C coupling constants ([Hz] *in italics*) in carbon-13 spectra; similar chemical shifts of carbon atoms that bear the same number of protons are printed *in italics* and may be exchanged

				.=			<u> </u>				Other ri	no-C				
Cpd.	CH _n	-Me	NMe	SO ₂ Me	CF ₃	C=N			С	Н	Other II	ing C		quat. C		[a]
	38.0	21.9				168.3 171.1	126.53 133.2	126.90	128.52	128.55	129.73	130.02	121.4	137.7	151.5	T
8e	49.3	20.9				168.27 168.48		126.77 129.79			128.25	128.47	121.4 151.5	137.6	144.5	T
9a		25.7	40.0			164.4 175.7	119.1 140.5	130.2	131.46	131.57	132.4	134.0	122.9	135.9	143.6	A
9b	31.0	11.1	39.2			167.3 175.5	119.1	130.2	131.5	132.6	134.0	140.4	122.7	136.0	143.7	A
9 c	42.1		38.5			164.7 174.1	119.3 131.81	128.8 132.7		130.23 140.6	130.61	131.57	123.0 144.0	134.7	138.8	A
9d	34.7	21.1	39.1			170.4 175.5	119.4 140.3	130.2	131.34	131.49	132.7	134.1	122.7	136.1	143.8	A
9e	45.8	22.1	39.3			166.8 175.2	119.3 131.75		129.16 134.3	130.25 140.53	130.29	131.45	122.8 144.1	136.0	140.94	A
11			31.5			156.2 175.0 ^[b]	114.5 135.7	122.6	128.8	130.12	130.37	131.00	116.3	136.8	144.5	T
13a			33.4	41.4		154.3 171.8	115.1 136.5	123.9	127.8	130.21	130.53	131.6	116.7	135.7	143.0	T
13b			34.0		[c]	155.2 172.1	115.4 136.8	124.9	128.8	130.53	130.99	132.0	117.4	135.0	142.8	T
(E)-15b ^[d] (Z)-15b ^[d]		12.1 18.9	40.1 41.8	43.3 44.8		163.08 168.0 169.26 169.60	122.6 129.73 131.50				128.17 130.62		130.04 138.80		138.74 144.9	Т
(E)-15f ^[d] (Z)-15f ^[d]			40.96 41.42		119.18 J = 317 119.50 J = 316	168.39 168.72	122.7 129.84 131.89				128.38 130.98			130.57 142.5	137.4 143.4	T
15h	71.3	35.3	44.5		119.5 $J = 316$	168.8		124.4 129.70			128.21	128.48	131.79 141.5	138.2	141.4	T
16f	64.5	12.4	40.2		119.4 $J = 319$	149.4 170.6	119.26 135.90	119.64	128.6	130.6	131.3	135.59	118.5	138.9	147.8	T
16h	75.0	24.4	39.1		119.3 $J = 321$	156.0 170.4	120.5 130.15	121.7 131.2	127.32 133.8		128.09	128.28	123.6 149.8	137.6	138.9	T
	С	Me ₂	_													
15d	63.8	[e]	45.05	45.17		166.3 167.6	123.6 131.6	125.8	128.2	129.35	129.56	130.42	130.65		144.9	T
[f]	63.7	20.6 34.0	45.11	45.26		166.7 169.3	123.5 131.9	126.0	128.4	129.40	129.71	130.6	134.6	139.0	144.7	T
15g	63.4	20.1 33.3	44.8		119.4 $J = 316$	166.4 171.1	123.3 132.0	126.8	128.3		129.90		130.34		143.6	T
16d	76.8	22.1	33.7	42.1		168.1 182.9	131.94					131.62	133.1	136.3	151.2	
16e	80.0	19.0	36.1	41.1		168.5 171.5		122.4 131.39			128.23	128.32	129.6 149.9	137.3	140.1	T
16g -	75.3	22.1	34.9 -		118.9 $J = 318$	169.1 182.9	122.79 132.72	123.15	128.6	131.04	131.34	132.57	131.10	136.0	151.1	T
-	C-1, C-	5 Me	_													_
18a	93.9 95.5	18.7	32.5	42.1		158.8	112.7 130.4		124.6			129.9	124.27		142.2	
18b	94.6 96.7	18.4	32.2		121.9 $J = 320$		112.7 131.0	117.9	124.8	126.2	129.0	130.37	122.6		141.4	
19	80.99 81.08	19.5	32.6	41.2 44.1		155.0	113.8 130.4	116.6	125.3	127.8	129.0	129.8	123.4	131.0	143.1	D

 $^{^{[}a]}$ Solvents: See Table 3. $^{[b]}$ C=O. $^{[c]}$ The quadruplet of the CF $_3$ group could not be detected. $^{[d]}$ Signals with $\delta > 100$ could not be assigned to the individual diastereomers. $^{[e]}$ Due to exchange broadening, the signals of the geminal methyl groups disappeared in the noise. $^{[f]}$ Spectrum recorded in the limit of slow exchange (–54 °C).

1-Methyl-2-(1-methylethyl)-4-phenylquinazolinium Hexafluorophos-phate (9d): Colourless powder (8.40 g, 82%). Recrystallisation from ethanol/water (10:1) gave colourless needles (4.76 g, 45%, m.p. 198–200 °C).

2-Benzyl-1-methyl-4-phenylquinazolinium Hexafluorophosphate (9c): Methyl trifluoromethanesulfonate (0.55 g, 3.4 mmol) was added dropwise by syringe under Ar to a stirred solution of **8c** (1.0 g, 3.4 mmol) in 1,2-dichloroethane (5 mL). The mixture was heated under reflux for 4 h. The solvent was distilled in vacuo. The oily residue was dissolved in ethanol (5 mL). A solution of NH₄PF₆ (0.55 g, 3.4 mmol) in water (10 mL) was added dropwise. A colourless oil formed and solidified slowly (5 d). The solid material was collected by filtration. Colourless powder (1.51 g, 98%). Recrystallisation from ethanol afforded colourless crystals (0.89 g, 59%, m.p. 172–174 °C).

1-Methyl-4-phenyl-2-(1-phenylethyl)quinazolinium Hexafluorophos-phate (9e): This compound was prepared from **8e** (2.74 g, 8.8 mmol) according to the procedure described for **9c**. Colourless powder (3.68 g, 90%). Recrystallisation from ethanol afforded colourless crystals (1.68 g, 41%, m.p. 199–201 °C).

2-Alkylidene-1,2-dihydro-1-methylquinazolines 10a-e. – General **Procedure:** Suspensions of powdered 9a-e (0.2 mmol) and KH (0.08 g, 2 mmol) in $[D_8]$ tetrahydrofuran (1 mL, 9a-c and 9e) or $[D_6]$ benzene (1 mL, 9d) were stirred in 10-mL centrifuge tubes, equipped with a septum, for 1 or 24 h, respectively. The solid material was separated with the help of the centrifuge. The solutions were transferred by syringe into NMR sample tubes and degassed by standard freeze-thaw techniques. The NMR sample tubes were evacuated (10^{-2} Torr) and sealed with a torch.

Experiments with Methanesulfonyl Azide (5a). – General Procedure: Suspensions of powdered 9a–e (3 mmol), NaH (0.22 g, 9 mmol), and 5a (0.91 g, 7.5 mmol) in tetrahydrofuran (30 mL) were stirred under Ar in 80-mL centrifuge tubes, equipped with a septum, until the gas evolution had ceased (1 d). The solid material was separated with the help of the centrifuge, washed with tetrahydrofuran (2 × 5 mL), and suspended in tetrahydrofuran (5 mL). The excess of NaH was destroyed by dropwise addition of ethanol until the gas evolution ceased. Dilution of the mixture with water (50 mL) yielded a precipitate, which was collected by filtration, washed with water and tetrahydrofuran, and dried to give 13a. After separation of the solid material from the reaction mixtures, the solvent was distilled under vacuum from the combined organic solutions and washings to give an oily residue, which was separated by flash chromatography.

1,2-Dihydro-1-methyl-2-[*N***-(methylsulfonyl)imino]-4-phenylquinazoline (13a). – (a) From 9a:** Green needles (0.48 g, 50%, m.p. 296–299 °C) were obtained from the solid material. Flash chromatography of the oily residue with EA gave a second crop, brown needles (30 mg, 3%, m.p. 295–298 °C). Recrystallisation from ethanol/CHCl₃ (4:1) afforded almost colourless needles (m.p. 297–300 °C). – MS, m/z (%): 313 (10) [M⁺], 298 (12) [M⁺ – Me], 235 (21), 234 (100) [M⁺ – SO₂Me], 205 (16), 194 (6). **– (b) From 9c:** Brown needles (0.72 g, 76%, m.p. 296–298 °C) were obtained from the solid material. Flash chromatography with EA of the oily residue gave a second crop (18 mg, 2%).

Trapping of the Ethylidenedihydroquinazoline 10b with 5a. – From **9b:** Compound **13a** was obtained from the solid material (0.20 g, 21%). Flash chromatography of the oily residue with PE/EA (1:1) gave a brown oil (**18a**) and colourless crystals (**19**, 0.26 g, 20%, m.p. 156–157 °C, dec.). Continued flash chromatography with EA

yielded a brown solid (15b, 0.56 g) and a second crop of 13a (0.15 g, 16%). – Compound 18a was purified by flash chromatography with PE/EA (1:1) to give a colourless powder (50 mg, 5%, m.p. 190–195 °C, dec.). Recrystallisation from CHCl₃/PE (1:1) afforded a colourless powder; MS, m/z (%): 358 (100) [M⁺ + H]. – Compound 19 was purified by flash chromatography with PE/EA (3:2) to give colourless crystals; MS, m/z (%): 435 (0.6) [M⁺ + H], 247 (9), 193 (9), 191 (91), 176 (51), 153 (8), 152 (100), 113 (16). – Compound 15b was purified by flash chromatography with PE/EA (1:1) and recrystallised from ethanol to give colourless crystals (0.15 g, 15%, m.p. 187–193 °C); MS, m/z (%): 342 (100) [M⁺ + H].

2,3-Dihydro-1,3,3-trimethyl-2-[*N*-(methylsulfonyl)imino]-5-phenyl-1*H*-benzo[*e*][1,4]diazepine (15d), and 2,3-Dihydro-1,2,2-trimethyl-3-[*N*-(methylsulfonyl)imino]-5-phenyl-1*H*-benzo[*e*][1,4]diazepine (16d). – From 9d: Compound 13a was obtained from the solid material (32 mg, 3%). Flash chromatography of the oily residue with PE/EA (1:1) gave a yellow solid (16d, 0.70 g) as the first fraction and a colourless solid (15d, 0.09 g). Continued flash chromato-

Table 5. Molecular formulae and masses, and elemental analyses

Сро	1.	Molecul	ar		Element	tal analys	is
		Mass		C	Н	N	S
8d	$1 C_{17}H_{16}N_2$	248.3	Calcd. Found	82.23 82.20	6.49 6.43	11.28 11.26	
8e	$C_{22}H_{18}N_2$	310.4	Calcd. Found	85.13 84.77	5.84 5.86	9.03 8.68	
9a	$C_{16}H_{15}F_6N_2P$	380.3	Calcd. Found	50.53 50.79	3.98 4.03	7.37 7.21	
9b	$C_{17}H_{17}F_6N_2P$	394.3	Calcd. Found	51.78 51.54	4.35 4.18	7.11 6.99	
9c	$C_{18}H_{19}F_6N_2P$	408.3	Caled. Found	52.95 52.70	4.96 4.95	6.86 6.80	
9d	$C_{22}H_{19}F_6N_2P$	456.4	Calcd. Found	57.89 57.55	4.20 4.22	6.14 6.06	
9e	$C_{23}H_{21}F_6N_2P$	470.4	Calcd. Found	58.73 58.27	4.50 4.38	5.96 5.93	
13a	$C_{16}H_{15}N_3O_2S$	313.4	Calcd. Found	61.33 60.82	4.82 4.96	13.41 13.55	10.23 10.19
13b	$C_{16}H_{12}F_3N_3O_2S$	367.3	Calcd. Found	52.31 52.01	3.29 3.51	11.44 11.28	8.73 8.74
15b	$C_{18}H_{19}N_3O_2S$	341.4	Calcd. Found	63.32 62.52	5.61 5.87	12.31 12.41	9.39 9.34
15d 16d	$C_{19}H_{21}N_3O_2S$	355.5	Calcd. Found Found	64.20 63.74 64.17	5.95 5.59 6.12	11.82 11.52 11.76	9.02 9.03 9.12
15f	$C_{18}H_{16}F_3N_3O_2S$	395.4	Calcd. Found	54.68 54.99	4.08 4.04	10.63 10.68	8.11 8.07
16f 15g	$C_{19}H_{18}F_3N_3O_2S$	409.4	Found Calcd. Found	54.96 55.74 55.87	4.17 4.43 4.45	10.64 10.26 10.23	8.17 7.83 7.62
16g 15h	$C_{24}H_{20}F_3N_3O_2S$	471.5	Found Calcd. Found	55.67 61.14 60.95	4.60 4.28 4.27	10.28 8.91 8.85	7.84 6.80 6.70
16h			Found	61.23	4.40	8.89	7.47
16e	$C_{24}H_{23}N_3O_2S$	417.5	Calcd. Found	69.04 68.84	5.55 5.50	10.06 9.77	7.68 7.70
18a	$C_{18}H_{19}N_3O_3S$	375.4	Calcd. Found	60.49 60.07	5.36 5.36	11.76 11.78	8.97 9.04
18b	$C_{18}H_{16}F_3N_3O_3S$	411.4	Calcd. Found	52.55 52.46	3.92 4.01	10.71 10.47	7.79 7.90
19	C ₁₉ H ₂₂ N ₄ O ₄ S ₂	434.5	Calcd. Found	52.52 52.40	5.10 5.23	12.89 12.49	14.76 15.08

graphy with EA yielded a yellow oil (second crop of **13a**, 7 mg). Recrystallisation of the different fractions from ethanol afforded **13a** (1 mg, 1%), **15d** (colourless crystals), and **16d** (yellow needles). – Compound **15d**: MS, m/z (%): 355 (8), [M⁺], 299 (9), 277 (23), 276 (100) [M⁺ – SO₂Me], 236 (27), 235 (31), 220 (28), 219 (11). – Compound **16d**: MS, m/z (%): 355 (0.5) [M⁺], 277 (14), 276 (61) [M⁺ – SO₂Me], 235 (29), 234 (100), 220 (17), 219 (9).

2,3-Dihydro-1,2-dimethyl-3-[*N***-(methylsulfonyl)imino]-2,5-diphenyl-1***H***-benzo**[e**|[1,4]diazepine (15e).** – From 9e: Compound 13a was obtained from the solid material (0.65 g, 70%). Flash chromatography of the oily residue with PE/EA (1:1) gave an orange-coloured oil (16e, 0.49 g). Continued flash chromatography with EA yielded a second crop of 13a (47 mg, 5%). Recrystallisation of 16e from ethanol afforded yellow needles (0.21 g, 17%, m.p. 191–193 °C). – MS, m/z (%): 417 (2) [M $^+$], 339 (26), 338 (100) [M $^+$ – SO₂Me], 297 (31), 296 (83), 280 (6), 237 (5), 236 (31), 235 (8), 221 (7), 220 (34), 204 (6).

Experiments with Trifluoromethanesulfonyl Azide (5b). – General Procedure: Suspensions of powdered 9a, 9b, 9d, or 9e (2 mmol) and KH (0.40 g, 10 mmol) in tetrahydrofuran (9a, 9b, 9e, 25 mL) or benzene (9d, 25 mL) were stirred for 1 or 24 h, respectively, in a centrifuge tube equipped with a septum and connected to a supply of Ar. Solid material was removed with the help of a centrifuge. The supernatant solution was transferred by syringe into a 100-mL flask, and the solid material was washed twice with the solvent employed (5 mL). A solution of 5b (1.05 g, 6 mmol) in dichlorome-

thane (10 mL) was added dropwise at 0 $^{\circ}$ C. The reaction mixture was stirred for 1 h at 0 $^{\circ}$ C and room temperature. The solvent was distilled under vacuum.

1,2-Dihydro-1-methyl-2-[*N*-(trifluoromethylsulfonyl)imino]-4-phenyl-quinazoline (13b). – From 9a: The brown oily residue was dissolved in EA (20 mL). The resulting precipitate was removed by filtration. Pale brown powder (0.23 g, 32%, m.p. 251–256 °C). Flash chromatography of the mother liquor with PE/EA (1:1) gave a second crop as a mixture of brown oil and crystals, which was recrystallised from ethanol to afford a brown powder (60 mg, 8%, m.p. 249–256 °C). Repeated recrystallisation from ethanol yielded an almost colourless powder, m.p. 254–256 °C. – MS, m/z (%): 367 (7) [M⁺], 300 (6), 299 (16), 298 (100) [M⁺ – CF₃], 234 (19) [M⁺ – SO₂CF₃], 219 (6), 205 (9).

2,3-Dihydro-1,3-dimethyl-2-[*N*-(trifluoromethylsulfonyl)imino]-5-phenyl-1*H*-benzo[*e*][1,4]diazepine (15f), 2,3-Dihydro-1,2-dimethyl-3-[*N*-(trifluoromethylsulfonyl)imino]-5-phenyl-1*H*-benzo[*e*][1,4]diazepine (16f) and 18b. – From 9b: Flash chromatography of the residue with EA gave a brown oil (mixture of 15f, 16f, and 18b) and a brown powder (13b, 38 mg, 5%, m.p. 254–256 °C). MPLC of the oil with PE/EA (4:1) yielded colourless crystals (18b, 36 mg, 5%, m.p. 162–167 °C, dec.), a yellow oil (15f, 100 mg), and yellow crystals (16f, 94 mg, 12%, m.p. 160–165 °C). – Recrystallisation from ethanol afforded colourless crystals of 18b {m.p. 165–167 °C (dec.); MS, *mlz* (%): 412 (100) [M⁺ + H]}, and 15f {48 mg, m.p. 131–134 °C; MS, *mlz* (%): 396 (100) [M⁺ + H]}, and yellow, yellow

Table 6. Experimental details and results of the X-ray diffraction analyses of (ax,E)-15b, 16d, 16e·C₂H₅OH and 19·CH₂Cl₂

Compound		(ax, E)-15 b	16d	16e •C ₂ H ₅ OH	19-CH ₂ Cl ₂		
Molecular form	ıula	C ₁₈ H ₁₉ N ₃ O ₂ S	C ₁₉ H ₂₁ N ₃ O ₂ S	C ₂₄ H ₂₃ N ₃ O ₂ S•C ₂ H ₅ OH	C ₁₉ H ₂₂ N ₄ O ₄ S ₂ •CH ₂ Cl ₂		
Molecular mass		341.43	355.45	463.6	519.47		
Crystal system		triclinic	orthorhombic	orthorhombic	triclinic		
Space group		P1bar	Pbca	Pben	$P\overline{1}$		
a [pm]		764.8(1)	1725.3(4)	3035.9(3)	920.99(6)		
b [pm]		1034.6(1)	2336.9(8)	891.9(1)	1006.10(7)		
c [pm]		1118.3(1)	907.7(3)	1720.1(2)	1453.78(8)		
α [deg]		96.836(6)			75.740(5)		
β [deg]		94.686(6)			73.587(5)		
γ [deg]		102.458(7)			75.740(5)		
V [nm ³]		0.8526(1)	3.6679(2)	4.6575(2)	1.1533(2)		
Z		2	8	8	2		
d (calcd.) [g cm	1-3]	1.330	1.287	1.322	1.496		
Size of the crys	tal [mm]	0.3 x 0.35 x 0.2	0.3 x 0.6 x 0.08	0.25 x 0.45 x 0.02	0.5 x 0.65 x 0.2		
Range h		-1 → 9	0 → 11	-32 → 0	–11 → 18		
k		-13 → 13	$0 \rightarrow 22$	0 → 9	-12 → 12		
I		-14 → 14	-1 → 30	0 → 18	$-18 \rightarrow 18$		
No. of measure	d reflections	4679	4960	5906	6227		
Symmetry-inde	pendent reflections	3798	4211	5275	5241		
Observed reflec	etions $F > 3\sigma(F)$	3130	1904	2059	1589		
Linear absorpt.	coeff. [mm-1]	0.21	0.19	0.17	0.50		
Absorption correction		ψ -scan	ψ -scan	ψ -scan	ψ -scan		
Ratio F_{obs} /parameters		14.42	8.39	7.20	15.30		
R		0.049	0.083	0.129	0.045		
$R_{\rm w}$		0.053	0.073	0.100	0.048		
Diff. Four.	$\Delta \rho_{\rm max}^{\rm [a]} [{\rm e\AA}^{-3}]$	0.25	0.33	0.91	0.61		
	$\Delta \rho_{min}^{\text{max}}[b]$	0.26	0.37	0.52	0.54		

[[]a] Maximum and [b] minimum of the remaining electron density in the final differential Fourier synthesis.

fluorescing crystals of **16f** {m.p. 169–172 °C; MS, m/z (%): 396 $(100) [M^+ + H]$.

2,3-Dihydro-1,3,3-trimethyl-2-[N-(trifluoromethylsulfonyl)imino]-5phenyl-1*H*-benzo[*e*][1,4]diazepine (15g), 2,3-Dihydro-1,2,2-trimethyl-3-[N-(trifluoromethylsulfonyl)imino]-5-phenyl-1H-benzo[e][1,4]diazepine (16g), and 1-Methyl-4-phenyl-1,2-dihydroquinazol-2-one (11). – From 9d: Flash chromatography of the residue with EA gave a yellow oil (mixture of 15g and 16g), pale yellow crystals (13b, 14 mg, 2%, m.p. 252-255 °C), and pale yellow needles (11, 50 mg, 12%, m.p. 145-147 °C). MPLC of the oil with PE/EA (7:3) yielded 15g and 16g as yellow solids. Recrystallisation from ethanol afforded pale yellow needles of 11 {m.p. 145-147 °C (ref. [18] pale yellow prisms, m.p. 142–143 °C); MS, m/z (%): 236 (70) [M⁺], 235 (100), 221 (37), 220 (18), 194 (41)}, colourless crystals of 15g (155 mg, 19%, m.p. 194–197 °C), and yellow needles of **16g** (189 mg, 23%, m.p. 137–140 °C). – **15g:** UV/Vis, $λ_{max}$ [nm] (log ε) (Figure 2): 224 (4.418), 250 (4.473.). – MS, m/z (%): 409 (2) [M⁺], 277 (14), 276 $(62) \ [M^+ - SO_2CF_3], \ 235 \ (26), \ 234 \ (100), \ 220 \ (19), \ 219 \ (9). - \textbf{16g:}$ UV/Vis, λ_{max} [nm] (log $\epsilon)$ (Figure 2): 220 (4.311) (sh), 257 (4.283), 288 (4.135) (sh), 410 (3.327). – MS, m/z (%): 409 (15) [M⁺], 353 (10), 277 (31), 276 (100) $[M^+ - SO_2CF_3]$, 236 (29), 220 (31), 219

2,3-Dihydro-1,3-dimethyl-2-[N-(trifluoromethylsulfonyl)imino]-3,5phenyl-1H-benzo[e][1,4]diazepine (15h), and 2,3-Dihydro-1,2-dimethyl-3-[N-(trifluoromethylsulfonyl)imino]-2,5-diphenyl-1H-benzo-[e][1,4] diazepine (16h). – From 9e: The yellow oily residue was dissolved in EA (20 mL). The resulting precipitate was removed by filtration to afford a colourless powder (13b, 0.31 g, 42%, m.p. 250– 252 °C). Flash chromatography of the mother liquor with PE/EA (1:1) gave a yellow oil (mixture of 15h and 16h), and colourless crystals (13b, 21 mg, 3%, m.p. 250-252 °C). The yellow oil was dissolved in EA (10 mL). Yellow crystals formed overnight and were removed with the help of a centrifuge (16h, 0.12 g, 13%, m.p. 230-234 °C). Colourless crystals precipitated from the mother liquor and were removed by filtration (15h, 76 mg, 8%, m.p. 253-256 °C). MPLC of the mother liquor with PE/EA (7:3) yielded second crops of 15h (yellow oil) and 16h (orange-coloured oil). Recrystallisation of the fractions from aq. ethanol afforded colourless crystals of **15h** {42 mg, 5%, 253–256 °C; MS, m/z (%): 471 (1) $[M^+]$, 339 (18), 338 (61) $[M^+ - SO_2CF_3]$, 284 (23), 283 (95), 237 (16), 236 (100), 235 (20), 220 (36), 219 (11), 205 (10)}, and yellow, yellow fluorescing crystals of 16h {16 mg, 2%, m.p. 227-232 °C; MS, m/z (%): 471 (1) [M⁺], 339 (239), 338 (80) [M⁺ – SO₂CF₃], 297 (35), 296 (100), 236 (11), 220 (32)}.

X-ray Diffraction Analyses: Analysis was performed on transparent, colourless $[(ax,E)-15b, 19\cdot CH_2Cl_2]$ and yellow (16d, 16e·C₂H₅OH) crystals. The cell parameters were determined on the basis of 22 reflections. The numbers of reflections reported in Table 6 were obtained with Mo- K_{α} radiation and $2\Theta_{\text{max}} = 55^{\circ}$ (graphite monochromator, Wyckoff scan). Measurements were carried out with a Siemens P4 system. The programme SHELXTL PLUS^[23] was employed. The structures were solved by direct methods and refined anisotropically by the least-squares method. The weighting scheme for R_w is $1/\sigma^2$. The positions of hydrogen atoms were calculated and included in the refinements with isotropic description.[24]

Acknowledgments

We express our gratitude to Dr. M. Seefelder for measuring the UV/Vis spectra, to Mrs. E. Ruckdeschel and Dr. M. Heubes for taking high-field NMR spectra, and to Dr. G. Lange and Mr. F.

Dadrich for recording the mass spectra. Financial support of this work by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie, Frankfurt am Main, is gratefully acknowledged. S. I. thanks the Deutscher Akademischer Austauschdienst (DAAD) for a stipend.

- The results are part of the dissertation by S. Ivanova, University of Würzburg, 1998.
- [2a] L. H. Sternbach, *J. Med. Chem.* **1979**, 22, 1–7. [2b] L. H. Sternbach, E. Reeder, *J. Org. Chem.* **1961**, 26, 1111–1120. [2c] L. H. Sternbach, E. Reeder, *J. Org. Chem.* **1961**, 26, 4488–4497. [2d] L. H. Sternbach, E. Reeder, *J. Org. Chem.* **1961**, 26, 4040.
- ^[3] G. A. Archer, L. H. Sternbach, *Chem. Rev.* **1968**, *68*, 747–784. ^[3b] L. H. Sternbach, *Angew. Chem.* **1971**, *83*, 70–79; Angew. Chem. Int. Ed. Engl. 1971, 10, 34-43.
- A. Walser, R. I. Fryer, 1,4-Diazepines in: The Chemistry of Heterocyclic Compounds, Volume 50: Bicyclic Diazepines (Ed.: R. I. Fryer), Wiley-Interscience, New York, 1991, chapters 5–8.
- [5a] A. Maelicke, Nachr. Chem. Tech. Lab. 1997, 45, 901–902. –
 [5b] A. Maelicke, Nachr. Chem. 2000, 48, 38–39. [5c] D. Hadjipavlou-Litina, C. Hansch, Chem. Rev. 1994, 94, 1483–1505.
- A. Nefzi, J. M. Ostresh, R. A. Houghten, Chem. Rev. 1997, 97, 449-472.
- [7] [7a] H. von Brachel, O. Graewinger, R. E. Nitz, K. Resag, E. Schraven (Casella Farbwerke), *Ger. Offen.* 1917273, **1970**; *Chem. Abstr.* **1970**, *73*, 131052y. – [^{7b]} H. von Brachel, O. Graewinger (Casella Farbwerke), *Ger. Offen.* 1942743, **1971**; *Chem. Abstr.* **1971**, *74*, 100116p. – ^[7c] H. von Brachel, O. Graewinger, H. Bender, H. Kindler, H. G. Greve, R. E. Nitz, K. Resag, E. Schraven (Casella Farbwerke), *Ger. Offen.* 1942744, **1971**; *Chem. Abstr.* **1971**, *74*, 112063g. – [7d] K. Meg-1942744, **1971**; *Chem. Abstr.* **1971**, *74*, 112063g. – ¹⁷⁴¹ K. Meguro, Y. Kuwada, T. Masudo, Y. Nagawa (Takeda Chemical Industries) *Ger. Offen.* 1942996, **1970**; *Chem. Abstr.* **1970**, *72*,100774k. – ^{17e1} Takeda Chemical Industries, Ltd., *Ger. Offen.* 1966616, **1973**; *Chem. Abstr.* **1973**, *79*, 32119t. – ^{17f1} K. Meguro, H. Tawada, Y. Kuwada, *Yakugaku Zasshi* **1973**, *93*, 1253–1262; *Chem. Abstr.* **1974**, *80*, 37082f. – ^{17e1} J. B. Hester, Jr. (Upjohn Co.), *Ger. Offen.* 2441436, **1975**; *Chem. Abstr.* **1975**, *83*, 28296p. – ^{17h1} J. B. Hester, Jr., *U. S. Pat.* 4082761, **1978**; *Chem. Abstr.* **1979**, *90*, 121670k.
- J. Bergman, A. Brynolf, K.-W. Törnroos, B. Karlsson, P.-E. Werner, *Heterocycles* **1983**, *20*, 2145–2148.
- G. F. Field, W. J. Zally, L. H. Sternbach, J. Org. Chem. 1971,
- 36, 777-782.

 [10a] Y. Yamada, T. Oine, I. Inoue, Bull. Chem. Soc. Jpn. 1974, 47, 339-342. [10b] Y. Yamada, T. Oine, I. Inoue, Bull. Chem. Soc. Jpn. 1974, 47, 343-347. [10c] C. Bogentoft, Ö. Ericsson, B. Danielsson, Acta Pharm. Suec. 1974, 11, 59-66. [10d] M. Z. Kirmani, K. Sethi, Tetrahedron Lett. 1979, 2917-2918. [10c] G. F. Field, W. J. Zally (Hoffmann-LaRoche), US 4238610, 1980; Chem. Abstr. 1981, 94, 208897w. [10f] A. Walser T. Flynn, C. Mason, R. I. Fryer, J. Heterocycl. Chem. Walser, T. Flynn, C. Mason, R. I. Fryer, J. Heterocycl. Chem. **1986**, *23*, 1303–1314.
- [11] [11a] Y. Sato, H. Kojima, H. Shirai, *J. Org. Chem.* **1976**, *41*, 195–199. [11b] Y. Sato, H. Kojima, H. Shirai, *J. Org. Chem.* **1976**, 41, 3325–3326.
- H. Quast, S. Ivanova, E.-M. Peters, K. Peters, Eur. J. Org. Chem. 2000, 507-520.
- H. Quast, M. Ach, E.-M. Peters, K. Peters, H. G. von Schner-
- ing, *Liebigs Ann.* **1992**, 1259–1269.

 [14] [14a] H. Quast, D. Regnat, J. Balthasar, K. Banert, E.-M. Peters, K. Peters, H. G. von Schnering, *Liebigs Ann.* **1991**, 409–416. – [14b] H. Quast, J. Balthasar, T. Hergenröther, D. Regnat, *Chem. Ber.* **1992**, 125, 2749–2756. – [14c] H. Quast, S. Ivanova, E.-M. Peters, K. Peters, H. G. von Schnering, *Liebigs Ann.* **1996**, 1541–1549. – [14d] H. Quast, M. Ach, S. Ivanova, E.-M. Peters, K. Peters, H. G. von Schnering, *Liebigs Ann.* **1996**, 1551–1558. – [14e] H. Quast. S. Ivanova, *Eur. J. Org.* Chem. 2000, 1229-1233.
- J. Bergman, A. Brynolf, B. Elman, E. Vuorinen, *Tetrahedron* **1986**, *42*, 3697–3706.
- H. Quast, M. Ach, M. K. Kindermann, P. Rademacher, M. Schindler, Chem. Ber. 1993, 126, 503-516.
- [17] [17a] G. Helmchen, B. Glatz, Ein apparativ einfaches System

und Säulen höchster Trennleistung zur präparativen Mitteldruck-Flüssigkeitschromatographie, Univ. Stuttgart, 1978. – [17b] E. Ade, G. Helmchen, G. Heiligenmann, Tetrahedron Lett. 1980, 21, 1137–1140. – [17c] B. A. Bidlingmeyer, Preparative Liquid Chromatography (Journal of Chromatography Library, vol. 38), 1st ed., Elsevier, Amsterdam, 1987. – [17d] A. Werner, Kontakte (Darmstadt) 1989, 3, 50. – [17e] H. Quast, H. Jakobi, B. Seiferling, Liebigs Ann. Chem. 1991, 41–46.

- [18] H. Ott, M. Denzer, J. Org. Chem. 1968, 33, 4263-4266.
- [19] H. Günther, NMR Spektroskopie, 3rd ed., Thieme, Stuttgart, 1992.
- [20] A. Walser, G. Silverman, J. Blount, R. I. Fryer, L. H. Sternbach, J. Org. Chem. 1971, 36, 1465–1469.
- [21] Beilstein Database BS9702PR, Beilstein Institut für Literatur der Organischen Chemie, Licensed to Beilstein Chemiedaten

- und Software GmbH and Beilstein Informationssysteme GmbH.
- [22] C. J. Cavender, V. J. Shiner, Jr., J. Org. Chem. 1972, 37, 3567–3569.
- [23] G. M. Sheldrick, University of Göttingen, unpublished results.
- Crystallographic data (excluding structure factors) for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-127358 (16d), -127359 (15b), -127360 (19·CH₂Cl₂), and -127361 (16e·C₂H₅OH). Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [Fax: int. code + 44-1223/336-033; E-mail: deposit@ccdc.cam.ac.uk].

Received August 4, 1999

[O99481]